حل معادلات دیفرانسیل جزیی با روش ترکیبی تبدیل لاپلاس و تکرار تغییرات به کمک برنامه نویسی در محیط متلب

thesis
abstract

در این پایان نامه ابتدا مقدمه ای کوتاه از حساب تغییرات را بیان می کنیم و با مفهوم تغییر تابعک آشنا می شویم که این مفهوم برای یافتن فرینه تابعک ها مورد استفاده قرار خواهد گرفت. همچنین شرایط لازم را برای فرینه به دست خواهیم آورد.سپس به تبدیل لاپلاس ، خواص آن و برخی از قضایای مربوط به آن می پردازیم. در ادامه به ایده های اساسی و پایه ای روش تکرار تغییرات و روش تجزیه لاپلاس در حل معادلات دیفرانسیل جزیی می پردازیم. سپس روش جدیدی ارائه می دهیم که ترکیبی از روش لاپلاس و روش تکرار تغییرات می باشد. و در نهایت دستگاه معادلات دیفرانسیل را به روش جدید مورد بررسی قرار می دهیم. همچنین مقایسه ایی بین روش تکرار تغییرات و روش جدید انجام می دهیم که در اغلب موارد نتیجه این مقایسه برتری عددی روش جدید است.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

حل معادلات دیفرانسیل جزیی با روش ترکیبی تبدیل لاپلاس و آشفتگی هموتوپی در محیط نرم افزاری محاسباتی

از آنجایی که بسیاری از مسائل علوم مهندسی به صورت معادلات دیفرانسیل جزیی اعم از خطی و غیر می باشند حل اینگونه مسائل همواره از اهمیت ویژه ای برخوردار است ، تاکنون روش های عددی و تحلیلی متعددی برای اینگونه مسائل ارائه شده است از جمله ی آن می توان به روش آشفتگی هموتوپی و تغییرات اشاره کرد.ولی با توجه به اینکه دسته ای از معادلات دیفرانسیل با مشتقات جزیی با روش های ذکر شده قابل حل نیستند بر آن شدیم ر...

حل معادلات دیفرانسیل جزیی با روش ترکیبی تبدیل لاپلاس و آشفتگی هموتوپی وردشی

هدفما در این پایان نامه است که تبدیل لاپلاس را با روش ]شفتگی هموتوپی وردشی(vhpm) ترکیب کنیم. این ترکیب، روش پیشنهادی موردنظر را قادر می سازد تا معادلاتی را که به وسیله روش های دیگری مانند روش تکرار وردشی(vim) قابل حل نیستند، را حل کند. به کارگیری روش های دیگر به دلیل محاسبات ریاضی دشوار و وقت گیر مشکل است.

حل معادلات زاخاروف-کوزنتسوف کسری به کمک روش تبدیل دیفرانسیل کاهش یافته

در این مقاله یک جواب تحلیلی تقریبی از معادلات زاخاروف-کوزنتسف کسری به کمک روش تبدیل دیفرانسیل کاهش یافته تعیین خواهد شد. دیده می شود که جواب های به دست آمده به وسیله روش تبدیل دیفرانسیل کاهش یافته، مناسب بوده و این روش، روشی موثر برای حل معادلات با مشتقات جزئی کسری قویاً غیرخطی است.

full text

بهبود روش تجزیه لاپلاس برای حل معادلات دیفرانسیل مسائل مقدار اولیه مرتبه دوم منفرد

در این مقاله ما بهبود روش تجزیه لاپلاس برای حل مسائل مقدار اولیه معادلات دیفرانسیل معمولی از مرتبه دوم را به کار می بریم. روش پیشنهاد شده می تواند برای مسائل خطی و غیرخطی به کار برده شود.

full text

حل عددی معادلات دیفرانسیل معمولی و جزیی با استفاده از روش تبدیل دیفرانسیل

در این پژوهش، هدف مطالعه و بررسی روش تبدیل دیفرانسیل است. این روش با توجه به نیازهایی که به حل معادلات دیفرانسیل در شاخه های مختلف علوم و مهندسی وجود داشت، نخستین بار توسط ژو ‎ltrfootnote{zhou}‎پایه گذاری شد. این روش بر پایه روش سری تیلور است اما مشکلات اساسی روش تیلور، همچون محاسبه ی مشتق مراتب بالا را ندارد. با تمام ویژگی های خوب، این روش کاستی هایی نیز دارد که با کمک گرفتن از برخی تکنیک...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران - دانشکده ریاضی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023